Insulin‐like Growth Factor 2‐Tagged Aptamer Chimeras (ITACs) Modular Assembly for Targeted and Efficient Degradation of Two Membrane Proteins

Author:

Tian Yuan1,Miao Yanyan1,Guo Pei2,Wang Junyan12,Han Da12ORCID

Affiliation:

1. Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Systems Medicine for Cancer Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China

2. Zhejiang Cancer Hospital Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China

Abstract

AbstractOverexpression of pathogenic membrane proteins drives abnormal proliferation and invasion of tumor cells. Various strategies to durably knockdown membrane proteins with heterobifunctional degraders have been successfully developed, including LYTAC, KineTAC, and AbTAC. However, challenges including complicated synthetic procedures and the inability to simultaneously degrade multiple pathogenic proteins still exist. Herein, we developed insulin‐like growth factor 2 (IGF2)‐tagged aptamer chimeras (ITACs) that link the cell‐surface lysosome‐targeting receptor IGF2R and membrane proteins of interest (POIs) based on specific recognition of aptamers to the POIs and high‐affinity binding of IGF2 to IGF2R. We demonstrated that ITACs exhibit robust degradation efficiency of various membrane proteins in multiple cell lines. Furthermore, systematic studies revealed that a moderate cell‐surface IGF2R level is responsible for the excellent degradation performance of ITACs. Importantly, we further established a modular assembly strategy that allows assembly of one IGF2 with two aptamers with precise stoichiometry (dITACs), enabling cooperative and simultaneous degradation of two membrane proteins. This work provides an efficient and facile target membrane protein degradation platform and will shed light on the treatment of diseases related to the overexpression of membrane proteins.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3