Crystallizing Self‐Standing Covalent Organic Framework Membranes for Ultrafast Proton Transport in Flow Batteries

Author:

Wu Yulin1,Wang Yixing2,Zhang Dezhu2,Xu Fang3,Dai Liheng1,Qu Kai1,Cao Hongyan3,Xia Yu3,Li Siyao1,Huang Kang23,Xu Zhi1ORCID

Affiliation:

1. State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China

2. Suzhou Laboratory Suzhou 215000 China

3. State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China

Abstract

AbstractCovalent organic frameworks (COFs) display great potential to be assembled into proton conductive membranes for their uniform and controllable pore structure, yet constructing self‐standing COF membrane with high crystallinity to fully exploit their ordered crystalline channels for efficient ionic conduction remains a great challenge. Here, a macromolecular‐mediated crystallization strategy is designed to manipulate the crystallization of self‐standing COF membrane, where the −SO3H groups in introduced sulfonated macromolecule chains function as the sites to interact with the precursors of COF and thus offer long‐range ordered template for membrane crystallization. The optimized self‐standing COF membrane composed of highly‐ordered nanopores exhibits high proton conductivity (75 mS cm−1 at 100 % relative humidity and 20 °C) and excellent flow battery performance, outperforming Nafion 212 and reported membranes. Meanwhile, the long‐term run of membrane is achieved with the help of the anchoring effect of flexible macromolecule chains. Our work provides inspiration to design self‐standing COF membranes with ordered channels for permselective application.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3