Low‐Temperature Hydrogenation of CO2 to Methanol in Water on ZnO‐Supported CuAu Nanoalloys

Author:

Mosrati Jawaher1ORCID,Ishida Tamao2ORCID,Mac Hung1,Al‐Yusufi Mohammed1,Honma Tetsuo3ORCID,Parliniska‐Wojtan Magdalena4ORCID,Kobayashi Yasuhiro5ORCID,Klyushin Alexander6ORCID,Murayama Toru27ORCID,Abdel‐Mageed Ali M.1ORCID

Affiliation:

1. Leibniz Institute for Catalysis (LIKAT Rostock) 18059 Rostock Germany

2. Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences Tokyo Metropolitan University Tokyo 192-0397 Japan

3. Japan Synchrotron Radiation Research Institute (JASRI) Hyogo 679-5198 Japan

4. Institute for Nuclear Physics Polish Academy of Sciences 31342 Krakow Poland

5. Institute for Integrated Radiation and Nuclear Science Kyoto University Osaka 590-0494 Japan

6. MAX IV Laboratory Lund University Box 118 22100 Lund Sweden

7. Research Center for Hydrogen Energy-based Society Tokyo Metropolitan University Tokyo 192-0397 Japan

Abstract

AbstractOptimizing processes and materials for the valorization of CO2 to hydrogen carriers or platform chemicals is a key step for mitigating global warming and for the sustainable use of renewables. We report here on the hydrogenation of CO2 in water on ZnO‐supported CuAu nanoalloys, based on ≤7 mol % Au. CuxAuy/ZnO catalysts were characterized using 197Au Mössbauer, in situ X‐ray absorption (Au LIII‐ and Cu K‐edges), and ambient pressure X‐ray photoelectron (APXP) spectroscopic methods together with X‐ray diffraction and high‐resolution electron microscopy. At 200 °C, the conversion of CO2 showed a significant increase by 34 times (from 0.1 to 3.4 %) upon increasing Cu93Au7 loading from 1 to 10 wt %, while maintaining methanol selectivity at 100 %. Limited CO selectivity (4–6 %) was observed upon increasing temperature up to 240 °C but associated with a ≈3‐fold increase in CO2 conversion. Based on APXPS during CO2 hydrogenation in an H2O‐rich mixture, Cu segregates preferentially to the surface in a mainly metallic state, while slightly charged Au submerges deeper into the subsurface region. These results and detailed structural analyses are topics of the present contribution.

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3