Subsurface Single‐Atom Catalyst Enabled by Mechanochemical Synthesis for Oxidation Chemistry

Author:

Guan Xuze1ORCID,Han Rong2,Asakura Hiroyuki34ORCID,Wang Bolun5ORCID,Chen Lu1,Yan Jay Hon Cheung1,Guan Shaoliang6,Keenan Luke7,Hayama Shusaku7,van Spronsen Matthijs A.7,Held Georg7,Zhang Jie1,Gu Hao1,Ren Yifei1,Zhang Lun1,Yao Zhangyi1,Zhu Yujiang8,Regoutz Anna8,Tanaka Tsunehiro4,Guo Yuzheng2ORCID,Wang Feng Ryan1

Affiliation:

1. Department of Chemical Engineering University College London London WC1E 7JE UK

2. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China

3. Department of Applied Chemistry, Faculty of Science and Engineering Kindai University, 3-4-1, Kowakae, Higashi-Osaka Osaka 577-8502 Japan

4. Department of Molecular Engineering, Graduate School of Engineering Kyoto University, Kyotodaigaku Katsura, Nishikyo-Ku Kyoto 615-8510 Japan

5. Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany

6. Maxwell Centre Cavendish Laboratory Cambridge CB3 0HE UK

7. Diamond Light Source Ltd Harwell Science and Innovation Campus Didcot, Oxfordshire OX11 0DE UK

8. Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK

Abstract

AbstractSingle‐atom catalysts have garnered significant attention due to their exceptional atom utilization and unique properties. However, the practical application of these catalysts is often impeded by challenges such as sintering‐induced instability and poisoning of isolated atoms due to strong gas adsorption. In this study, we employed the mechanochemical method to insert single Cu atoms into the subsurface of Fe2O3 support. By manipulating the location of single atoms at the surface or subsurface, catalysts with distinct adsorption properties and reaction mechanisms can be achieved. It was observed that the subsurface Cu single atoms in Fe2O3 remained isolated under both oxidation and reduction environments, whereas surface Cu single atoms on Fe2O3 experienced sintering under reduction conditions. The unique properties of these subsurface single‐atom catalysts call for innovations and new understandings in catalyst design.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3