An In‐Situ‐Tag‐Generation Proximity Labeling Technology for Recording Cellular Interactions

Author:

Yao Yunyan1,Jia Ru2,Liu Chuanming34,Wang Haiqi1,Li Ting5,Zheng Xiaocui5,Zhong Tong1,Feng Nan1,Sun Jiahui1,Li Ke1,Xie Ran56,Ding Lijun34,Yan Chao267,Ding Lin16ORCID,Ju Huangxian1

Affiliation:

1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing P. R. China

2. State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University 210023 Nanjing P. R. China

3. Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Nanjing University Medical School 210008 Nanjing P. R. China

4. Center for Molecular Reproductive Medicine Nanjing University 210008 Nanjing P. R. China

5. State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing P. R. China

6. Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing P. R. China

7. Engineering Research Center of Protein and Peptide Medicine Ministry of Education 210023 Nanjing P. R. China

Abstract

AbstractObtaining information about cellular interactions is fundamental to the elucidation of physiological and pathological processes. Proximity labeling technologies have been widely used to report cellular interactions in situ; however, the reliance on addition of tag molecules typically restricts their application to regions where tags can readily diffuse, while the application in, for example, solid tissues, is susceptible. Here, we propose an “in‐situ‐tag‐generation mechanism” and develop the GalTag technology based on galactose oxidase (GAO) for recording cellular interactions within three‐dimensional biological solid regions. GAO mounted on bait cells can in situ generate bio‐orthogonal aldehyde tags as interaction reporters on prey cells. Using GalTag, we monitored the dynamics of cellular interactions and assessed the targeting ability of engineered cells. In particular, we recorded, for the first time, the footprints of Bacillus Calmette‐Guérin (BCG) invasion into the bladder tissue of living mice, providing a valuable perspective to elucidate the anti‐tumor mechanism of BCG.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

State Key Laboratory of Analytical Chemistry for Life Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3