Decoding Nanomaterial‐Biosystem Interactions through Machine Learning

Author:

Dhoble Sagar1,Wu Tzu‐Hsien1,Kenry 123ORCID

Affiliation:

1. Department of Pharmacology and Toxicology R. Ken Coit College of Pharmacy University of Arizona Tucson AZ 85721 USA

2. University of Arizona Cancer Center University of Arizona Tucson AZ 85721 USA

3. BIO5 Institute University of Arizona Tucson AZ 85721 USA

Abstract

AbstractThe interactions between biosystems and nanomaterials regulate most of their theranostic and nanomedicine applications. These nanomaterial‐biosystem interactions are highly complex and influenced by a number of entangled factors, including but not limited to the physicochemical features of nanomaterials, the types and characteristics of the interacting biosystems, and the properties of the surrounding microenvironments. Over the years, different experimental approaches coupled with computational modeling have revealed important insights into these interactions, although many outstanding questions remain unanswered. The emergence of machine learning has provided a timely and unique opportunity to revisit nanomaterial‐biosystem interactions and to further push the boundary of this field. This minireview highlights the development and use of machine learning to decode nanomaterial‐biosystem interactions and provides our perspectives on the current challenges and potential opportunities in this field.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3