Affiliation:
1. School of Chemistry Beihang University Beijing 100191 P. R. China
2. Department of Chemistry College of Science KU-KIST Graduate School of Converging Science and Technology Korea University Seoul 136-713 Republic of Korea
Abstract
AbstractOligomer acceptors in organic solar cells (OSCs) have garnered substantial attention owing to their impressive power conversion efficiency (PCE) and long‐term stability. However, the simple and efficient synthesis of oligomer acceptors with higher glass transition temperatures (Tg) remains a formidable challenge. In this study, we propose an innovative strategy for the synthesis of tetramers, denoted as Tet‐n, with elevated Tgs, achieved through only two consecutive Stille coupling reactions. Importantly, our strategy significantly reduces the redundancy in reaction steps compared to conventional methods for linear tetramer synthesis, thereby improving both reaction efficiency and yield. Furthermore, the OSC based on PM6:Tet‐1 attains a high PCE of 17.32 %, and the PM6:L8‐BO:Tet‐1 ternary device achieves an even more higher PCE of 19.31 %. Remarkably, the binary device based on the Tet‐1 tetramer demonstrates outstanding operational stability, retaining 80 % of the initial efficiency (T80) even after 1706 h of continuous illumination, which is primarily attributed to the enhanced Tg (247 °C) and lower diffusion coefficient (1.56×10−27 cm2 s−1). This work demonstrates the effectiveness of our proposed approach in the straightforward and efficient synthesis of tetramers materials with higher Tgs, thus offering a viable pathway for developing high‐efficiency and stable OSCs.
Subject
General Chemistry,Catalysis
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献