CO‐Induced Dimer Decay Responsible for Gem‐Dicarbonyl Formation on a Model Single‐Atom Catalyst

Author:

Wang Chunlei1ORCID,Sombut Panukorn1ORCID,Puntscher Lena1,Jakub Zdenek12ORCID,Meier Matthias13ORCID,Pavelec Jiri1ORCID,Bliem Roland4ORCID,Schmid Michael1ORCID,Diebold Ulrike1ORCID,Franchini Cesare35ORCID,Parkinson Gareth S.1ORCID

Affiliation:

1. Institute of Applied Physics TU Wien Vienna 1040 Austria

2. Central European Institute of Technology (CEITEC) Brno University of Technology Brno 612 00 Czechia

3. Faculty of Physics, Center for Computational Materials Science University of Vienna Vienna 1090 Austria

4. Advanced Research Center for Nanolithography 1098XG Amsterdam Netherlands

5. Dipartimento di Fisica e Astronomia Università di Bologna Bologna 40127 Italy

Abstract

AbstractThe ability to coordinate multiple reactants at the same active site is important for the wide‐spread applicability of single‐atom catalysis. Model catalysts are ideal to investigate the link between active site geometry and reactant binding, because the structure of single‐crystal surfaces can be precisely determined, the adsorbates imaged by scanning tunneling microscopy (STM), and direct comparisons made to density functional theory. In this study, we follow the evolution of Rh1 adatoms and minority Rh2 dimers on Fe3O4(001) during exposure to CO using time‐lapse STM at room temperature. CO adsorption at Rh1 sites results exclusively in stable Rh1CO monocarbonyls, because the Rh atom adapts its coordination to create a stable pseudo‐square planar environment. Rh1(CO)2 gem‐dicarbonyl species are also observed, but these form exclusively through the breakup of Rh2 dimers via an unstable Rh2(CO)3 intermediate. Overall, our results illustrate how minority species invisible to area‐averaging spectra can play an important role in catalytic systems, and show that the decomposition of dimers or small clusters can be an avenue to produce reactive, metastable configurations in single‐atom catalysis.

Funder

HORIZON EUROPE European Research Council

Austrian Science Fund

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3