Ultrafast Surface‐Specific Spectroscopy of Water at a Photoexcited TiO2 Model Water‐Splitting Photocatalyst

Author:

Backus Ellen H. G.12ORCID,Hosseinpour Saman23ORCID,Ramanan Charusheela24ORCID,Sun Shumei2,Schlegel Simon J.2,Zelenka Moritz1ORCID,Jia Xiaoyu2,Gebhard Maximilian5ORCID,Devi Anjana5ORCID,Wang Hai I.26ORCID,Bonn Mischa2ORCID

Affiliation:

1. University of Vienna Faculty of Chemistry Institute of Physical Chemistry Währinger Straße 42 1090 Vienna Austria

2. Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany

3. Current address: Institute of Particle Technology (LFG) Friedrich-Alexander-Universität-Erlangen-Nürnberg (FAU) Cauerstraße 4 91058 Erlangen Germany

4. Department of Physics and Astronomy Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 1081 1081 HV Amsterdam The Netherlands

5. Inorganic Materials Chemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany

6. Nanophotonics Debye Institute for Nanomaterials Science Utrecht University Princetonplein 1 3584 CC Utrecht The Netherlands

Abstract

AbstractA critical step in photocatalytic water dissociation is the hole‐mediated oxidation reaction. Molecular‐level insights into the mechanism of this complex reaction under realistic conditions with high temporal resolution are highly desirable. Here, we use femtosecond time‐resolved, surface‐specific vibrational sum frequency generation spectroscopy to study the photo‐induced reaction directly at the interface of the photocatalyst TiO2 in contact with liquid water at room temperature. Thanks to the inherent surface specificity of the spectroscopic method, we can follow the reaction of solely the interfacial water molecules directly at the interface at timescales on which the reaction takes place. Following the generation of holes at the surface immediately after photoexcitation of the catalyst with UV light, water dissociation occurs on a sub‐20 ps timescale. The reaction mechanism is similar at pH 3 and 11. In both cases, we observe the conversion of H2O into Ti−OH groups and the deprotonation of pre‐existing Ti−OH groups. This study provides unique experimental insights into the early steps of the photo‐induced dissociation processes at the photocatalyst‐water interface, relevant to the design of improved photocatalysts.

Funder

Österreichische Forschungsgemeinschaft

FP7 Ideas: European Research Council

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3