Affiliation:
1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
3. School of Chemical Sciences The University of Auckland Auckland 1142 New Zealand
Abstract
AbstractPhotothermal catalysis is one of the most promising green catalytic technologies, while distinguishing the effects of hot electrons and local heating remains challenging. Herein, we reported that the actual reaction temperature of photothermal ammonia synthesis over carbon‐supported Ru catalyst can be measured based on Le Chatelier′s principle, enabling the hot‐electron contribution to be quantified. By excluding local heating effects, we established that the activation energy via photothermal catalysis was much lower than that of thermocatalysis (54.9 vs. 126.0 kJ mol−1), stemming from hot‐electron injection lowering the energy barriers for both N2 dissociation and intermediates hydrogenation. Furthermore, hot‐electron injection acted to suppress carbon support methanation, giving the catalyst outstanding operational stability over 1000 h. This work provides new insights into the hot‐electron effects in ammonia synthesis, guiding the design of high‐performance photothermal catalysts.
Funder
National Natural Science Foundation of China
Subject
General Chemistry,Catalysis
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献