Affiliation:
1. Department of Chemistry and Chemical Engineering Inha University 100 Inha-ro, Michuhol-gu Incheon 22212 (Republic of Korea
2. Center for Nanomaterials and Chemical Reactions Institute for Basic Science (IBS) Daejeon 34141 (Republic of Korea
3. Department of Chemistry Chung-Ang University Seoul 06974 (Republic of Korea
Abstract
AbstractWe report a general synthetic strategy for post‐encapsulation of metal nanoparticles within preformed zeolites using post‐synthetic modification. Both anionic and cationic precursors to metal nanoparticle are supported on 8‐ and 10‐membered ring zeolites and analogues during wet impregnation using 2‐aminoethanethiol (AET) as a bi‐grafting agent. Thiol groups are coordinated to metal centers, whereas amine moieties are dynamically attached to micropore walls via acid‐base interactions. The dynamic acid‐base interactions cause the even distribution of the metal‐AET complex throughout the zeolite matrix. These processes encapsulate Au, Rh, and Ni precursors within the CHA, *MRE, MFI zeolite, and SAPO‐34 zeolite analogues, for which small channel apertures preclude the post‐synthesis impregnation of metal precursors. Sequential activation forms small and uniform nanoparticles (1–2.5 nm in diameter), as confirmed through electron microscopy and X‐ray absorption spectroscopy. Containment within the small micropores protected the nanoparticles against harsh thermal sintering conditions and prevented the fouling of the metal surface by coke, thus resulting in a high catalytic performance in n‐dodecane hydroisomerization and methane decomposition. The remarkable specificity of the thiol to metal precursors and the dynamic acid‐base interaction make these protocols extendable to various metal‐zeolite systems, suitable for shape‐selective catalysts in challenging chemical environments.
Funder
Korea Institute of Energy Research
National Research Foundation
Subject
General Chemistry,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献