Affiliation:
1. Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona, Campus Montilivi Girona E-17071, Catalonia Spain
2. Dipartimento di Scienze e Tecnologie Chimiche Università “Tor Vergata”; Via della Ricerca Scientifica, 1 I-00133 Rome Italy
Abstract
AbstractThe tert‐butyl group is a common aliphatic motif extensively employed to implement steric congestion and conformational rigidity in organic and organometallic molecules. Because of the combination of a high bond dissociation energy (~100 kcal mol−1) and limited accessibility, in the absence of directing groups, neither radical nor organometallic approaches are effective for the chemical modification of tert‐butyl C−H bonds. Herein we overcome these limits by employing a highly electrophilic manganese catalyst, [Mn(CF3bpeb)(OTf)2], that operates in the strong hydrogen bond donor solvent nonafluoro‐tert‐butyl alcohol (NFTBA) and catalytically activates hydrogen peroxide to generate a powerful manganese‐oxo species that effectively oxidizes tert‐butyl C−H bonds. Leveraging on the interplay of steric, electronic, medium and torsional effects, site‐selective and product chemoselective hydroxylation of the tert‐butyl group is accomplished with broad reaction scope, delivering primary alcohols as largely dominant products in preparative yields. Late‐stage hydroxylation at tert‐butyl sites is demonstrated on 6 densely functionalized molecules of pharmaceutical interest. This work uncovers a novel disconnection approach, harnessing tert‐butyl as a potential functional group in strategic synthetic planning for complex molecular architectures.
Funder
H2020 European Research Council
Generalitat de Catalunya