Bulk and Surface Contributions to Ionisation Potentials of Metal Oxides

Author:

Zhang Xingfan1ORCID,Liu Taifeng12ORCID,Zhu Lei1ORCID,Guan Jingcheng1ORCID,Lu You3,Keal Thomas W.3ORCID,Buckeridge John4ORCID,Catlow C. Richard A.15ORCID,Sokol Alexey A.1ORCID

Affiliation:

1. Kathleen Lonsdale Materials Chemistry Department of Chemistry University College London WC1H 0AJ London UK

2. National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials Henan University 475004 Kaifeng China

3. Scientific Computing Department STFC Daresbury Laboratory WA4 4AD Warrington Cheshire UK

4. School of Engineering London South Bank University SE1 OAA London UK

5. School of Chemistry Cardiff University Park Place CF10 1AT Cardiff UK

Abstract

AbstractDetermining the absolute band edge positions in solid materials is crucial for optimising their performance in wide‐ranging applications including photocatalysis and electronic devices. However, obtaining absolute energies is challenging, as seen in CeO2, where experimental measurements show substantial discrepancies in the ionisation potential (IP). Here, we have combined several theoretical approaches, from classical electrostatics to quantum mechanics, to elucidate the bulk and surface contributions to the IP of metal oxides. We have determined a theoretical bulk contribution to the IP of stoichiometric CeO2 of only 5.38 eV, while surface orientation results in intrinsic IP variations ranging from 4.2 eV to 8.2 eV. Highly tuneable IPs were also found in TiO2, ZrO2, and HfO2, in which surface polarisation plays a pivotal role in long‐range energy level shifting. Our analysis, in addition to rationalising the observed range of experimental results, provides a firm basis for future interpretations of experimental and computational studies of oxide band structures.

Funder

Engineering and Physical Sciences Research Council

China Scholarship Council

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3