Affiliation:
1. Department of Chemistry The University of Chicago Chicago IL 60637 USA
2. Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research The University of Chicago Chicago IL 60637 USA
Abstract
AbstractThe efficacy of photodynamic therapy (PDT) depends on the subcellular localization of photosensitizers. Herein, we report a dual‐organelle‐targeted nanoparticle platform for enhanced PDT of cancer. By grafting 5‐aminolevulinic acid (ALA) to a Hf12‐based nanoscale metal‐organic layer (Hf‐MOL) via carboxylate coordination, ALA/Hf‐MOL enhanced ALA delivery and protoporphyrin IX (PpIX) synthesis in mitochondria, and trapped the Hf‐MOL comprising 5,15‐di‐p‐benzoatoporphyrin (DBP) photosensitizers in lysosomes. Light irradiation at 630 nm simultaneously excited PpIX and DBP to generate singlet oxygen and rapidly damage both mitochondria and lysosomes, leading to synergistic enhancement of the PDT efficacy. The dual‐organelle‐targeted ALA/Hf‐MOL outperformed Hf‐MOL in preclinical PDT studies, with a 2.7‐fold lower half maximal inhibitory concentration in cytotoxicity assays in vitro and a 3‐fold higher cure rate in a colon cancer model in vivo.
Funder
National Institutes of Health
Subject
General Chemistry,Catalysis
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献