Directed Evolution of Piperazic Acid Incorporation by a Nonribosomal Peptide Synthetase**

Author:

Stephan Philipp1,Langley Chloe2ORCID,Winkler Daniela1,Basquin Jérôme3ORCID,Caputi Lorenzo2ORCID,O'Connor Sarah E.2ORCID,Kries Hajo1ORCID

Affiliation:

1. Junior Research Group Biosynthetic Design of Natural Products Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany

2. Department of Natural Product Biosynthesis Max Planck Institute for Chemical Ecology Hans-Knöll-Str. 8 07745 Jena Germany

3. Department of Structural Cell Biology Max Planck Institute for Biochemistry Am Klopferspitz 18 82152 Planegg Martinsried Germany

Abstract

AbstractEngineering of biosynthetic enzymes is increasingly employed to synthesize structural analogues of antibiotics. Of special interest are nonribosomal peptide synthetases (NRPSs) responsible for the production of important antimicrobial peptides. Here, directed evolution of an adenylation domain of a Pro‐specific NRPS module completely switched substrate specificity to the non‐standard amino acid piperazic acid (Piz) bearing a labile N−N bond. This success was achieved by UPLC‐MS/MS‐based screening of small, rationally designed mutant libraries and can presumably be replicated with a larger number of substrates and NRPS modules. The evolved NRPS produces a Piz‐derived gramicidin S analogue. Thus, we give new impetus to the too‐early dismissed idea that widely accessible low‐throughput methods can switch the specificity of NRPSs in a biosynthetically useful fashion.

Funder

Daimler und Benz Stiftung

Fonds der Chemischen Industrie

International Leibniz Research School for Microbial and Biomolecular Interactions

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Throughput Engineering of Nonribosomal Extension Modules;ACS Chemical Biology;2023-11-20

2. Novel Biocatalysts from Specialized Metabolism;Angewandte Chemie International Edition;2023-10-25

3. Novel Biocatalysts from Specialized Metabolism;Angewandte Chemie;2023-10-25

4. Analysing Megasynthetase Mutants at High Throughput Using Droplet Microfluidics**;ChemBioChem;2023-10-24

5. Notizen aus der Chemie;Nachrichten aus der Chemie;2023-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3