Dual‐Functional Z‐Scheme TiO2@MoS2@NC Multi‐Heterostructures for Photo‐Driving Ultrafast Sodium Ion Storage

Author:

Li Jinhang1,Zhang Yuqiang1,Mao Yiyang2,Zhao Yingying12,Kan Dongxiao3,Zhu Kai2,Chou Shulei4ORCID,Zhang Xitian5,Zhu Chunling2,Ren Jing1,Chen Yujin12ORCID

Affiliation:

1. Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering Harbin Engineering University Harbin 150001 China

2. Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 China

3. Northwest Institute for Non-Ferrous Metal Research Xi'an Shaanxi 710016 China

4. Institute for Carbon Neutralization, College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China

5. Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 China

Abstract

AbstractExploiting dual‐functional photoelectrodes to harvest and store solar energy is a challenging but efficient way for achieving renewable energy utilization. Herein, multi‐heterostructures consisting of N‐doped carbon coated MoS2 nanosheets supported by tubular TiO2 with photoelectric conversion and electronic transfer interfaces are designed. When a photo sodium ion battery (photo‐SIB) is assembled based on the heterostructures, its capacity increases to 399.3 mAh g−1 with a high photo‐conversion efficiency of 0.71 % switching from dark to visible light at 2.0 A g−1. Remarkably, the photo‐SIB can be recharged by light only, with a striking capacity of 231.4 mAh g−1. Experimental and theoretical results suggest that the proposed multi‐heterostructures can enhance charge transfer kinetics, maintain structural stability, and facilitate the separation of photo‐excited carriers. This work presents a new strategy to design dual‐functional photoelectrodes for efficient use of solar energy.

Funder

Postdoctoral Research Foundation of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3