The Influence of Ions on the Electrochemical Stability of Aqueous Electrolytes

Author:

Sui Yiming1,Scida Alexis M.1,Li Bo2,Chen Cheng1,Fu Yanke3,Fang Yanzhao1,Greaney P. Alex3,Osborn Popp Thomas M.1,Jiang De‐en2,Fang Chong1,Ji Xiulei1ORCID

Affiliation:

1. Department of Chemistry Oregon State University Corvallis OR 97331–4003 United States

2. Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville TN 37235 United States

3. Materials Science and Engineering University of California Riverside Riverside CA 92521 United States

Abstract

AbstractThe electrochemical stability window of water is known to vary with the type and concentration of dissolved salts. However, the underlying influence of ions on the thermodynamic stability of aqueous solutions has not been fully understood. Here, we investigated the electrolytic behaviors of aqueous electrolytes as a function of different ions. Our findings indicate that ions with high ionic potentials, i.e., charge density, promote the formation of their respective hydration structures, enhancing electrolytic reactions via an inductive effect, particularly for small cations. Conversely, ions with lower ionic potentials increase the proportion of free water molecules—those not engaged in hydration shells or hydrogen‐bonding networks—leading to greater electrolytic stability. Furthermore, we observe that the chemical environment created by bulky ions with lower ionic potentials impedes electrolytic reactions by frustrating the solvation of protons and hydroxide ions, the products of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. We found that the solvation of protons plays a more substantial role than that of hydroxide, which explains a greater shift for OER than for HER, a puzzle that cannot be rationalized by the notion of varying O−H bond strengths of water. These insights will help the design of aqueous systems.

Funder

Division of Materials Research

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Division of Chemistry

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrodeposition of Molybdenum from Water-in-Acetate Electrolytes;Journal of The Electrochemical Society;2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3