Affiliation:
1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
2. International Center of Future Science Jilin University Changchun 130012 P. R. China
Abstract
AbstractThe lack of stable solid‐state electrolytes (SSEs) with high‐ionic conductivity and the rational design of electrode/electrolyte interfaces remains challenging for solid‐state lithium batteries. Here, for the first time, a high‐performance solid‐state lithium‐oxygen (Li−O2) battery is developed based on the Li‐ion‐conducted hydrogen‐bonded organic framework (LHOF) electrolyte and the HOF‐DAT@CNT composite cathode. Benefiting from the abundant dynamic hydrogen bonding network in the backbone of LHOF‐DAT SSEs, fast Li+ ion transport (2.2×10−4 S cm−1), a high Li+ transference number (0.88), and a wide electrochemical window of 5.05 V are achieved. Symmetric batteries constructed with LHOF‐DAT SSEs exhibit a stably cycled duration of over 1400 h with uniform deposition, which mainly stems from the jumping sites that promote a uniformly high rate of Li+ flux and the hydrogen‐bonding network structure that can relieve the structural changes during Li+ transport. LHOF‐DAT SSEs‐based Li−O2 batteries exhibit high specific capacity (10335 mAh g−1), and stable cycling life up to 150 cycles. Moreover, the solid‐state lithium metal battery with LHOF‐DAT SSEs endow good rate capability (129.6 mAh g−1 at 0.5 C), long‐term discharge/charge stability (210 cycles). The design of LHOF‐DAT SSEs opens an avenue for the development of novel SSEs‐based solid‐state lithium batteries.