Affiliation:
1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry and Chemical Engineering Donghua University Shanghai 201620 China
Abstract
AbstractAqueous zinc (Zn) ion batteries are attractive for next generation batteries with high safety, yet their applications are still hindered by the uncontrollable dendrite formation and side reactions on Zn anode. Here, a polyzwitterion protective layer (PZIL) was engineered by polymerizing 2‐methacryloyloxyethyl phosphorylcholine (MPC) in carboxymethyl chitosan (CMCS), which renders the following merits: the choline groups of MPC can preferentially adsorb onto Zn metal to avoid side reactions; the charged phosphate groups chelate with Zn2+ to regulate the solvation structure, further improving side reaction inhibition; the Hofmeister effect between ZnSO4 and CMCS can enhance the interfacial contact during electrochemical characterization. Consequently, the symmetrical Zn battery with PZIL can keep stable for more than 1000 hours under the ultra‐high current density of 40 mA cm−2. The PZIL confers the Zn/MnO2 full battery and Zn/active carbon (AC) capacitor with stable cycling performance under high current density.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
General Chemistry,Catalysis
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献