Dual Photo‐Responsive Diphenylacetylene Enables PET In‐Situ Upcycling with Reverse Enhanced UV‐Resistance and Strength

Author:

Fan Li‐Xia1,Chen Lin1ORCID,Zhang Hua‐Yu1,Xu Wen‐Hao1,Wang Xiu‐Li1,Xu Shimei1,Wang Yu‐Zhong1

Affiliation:

1. Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE) State Key Laboratory of Polymer Materials Engineering National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry Sichuan University Chengdu 610064 China

Abstract

AbstractA novel in situ chemical upcycling strategy for plastic waste is proposed by the customized diphenylacetylene monomer with dual photo‐response. That is, diphenylacetylene reactive monomers are in situ inserted into the macromolecular chain of polyethylene terephthalate (PET) plastics/fibers through one‐pot transesterification of slight‐depolymerization and re‐polymerization. On the one hand, the diphenylacetylene group absorbs short‐wave high‐energy UV rays and then releases long‐wave low‐energy harmless fluorescence. On the other hand, the UV‐induced photo‐crosslinking reaction among diphenylacetylene groups produces extended π‐conjugated structure, resulting in a red‐shift (due to decreased HOMO–LUMO separation) in the UV absorption band and locked crosslink points between PET chains. Therefore, with increasing UV exposure time, the upcycled PET plastics exhibit reverse enhanced UV resistance and mechanical strength (superior to original performance), instead of serious UV‐photodegradation and damaged performance. This upcycling strategy at oligomer‐scale not only provides a new idea for traditional plastic recycling, but also solves the common problem of gradual degradation of polymer performance during use.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3