Spin Manipulation in a Metal–Organic Layer through Mechanical Exfoliation for Highly Selective CO2Photoreduction

Author:

Wu Dayu1,Yin Hua‐Qing2,Wang Zeshi3,Zhou Mingren1,Yu Chengfeng1,Wu Jing1,Miao Huixian1,Yamamoto Takashi4,Zhaxi Wenjiang1,Huang Zetao1,Liu Luying1,Huang Wei1,Zhong Wenhui5,Einaga Yasuaki4,Jiang Jun3,Zhang Zhi‐Ming2ORCID

Affiliation:

1. Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis & Green Manufacturing Collaborative Innovation Center School of Petrochemical Engineering Changzhou University Changzhou Jiangsu 213164 P. R. China

2. Institute for New Energy Materials & Low Carbon Technologies School of Material Science & Engineering Tianjin University of Technology Tianjin 300384 P. R. China

3. Hefei National Research Center for Physical Sciences at the Microscale School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 P. R. China

4. Department of Chemistry Keio University 3-14-1 Hiyoshi Yokohama Japan

5. School of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 P. R. China

Abstract

AbstractSpin manipulation of transition‐metal catalysts has great potential in mimicking enzyme electronic structures to improve activity and/or selectivity. However, it remains a great challenge to manipulate room‐temperature spin state of catalytic centers. Herein, we report a mechanical exfoliation strategy to in situ induce partial spin crossover from high‐spin (s=5/2) to low‐spin (s=1/2) of the ferric center. Due to spin transition of catalytic center, mixed‐spin catalyst exhibits a high CO yield of 19.7 mmol g−1with selectivity of 91.6 %, much superior to that of high‐spin bulk counterpart (50 % selectivity). Density functional theory calculations reveal that low‐spin 3d‐orbital electronic configuration performs a key function in promoting CO2adsorption and reducing activation barrier. Hence, the spin manipulation highlights a new insight into designing highly efficient biomimetic catalysts via optimizing spin state.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3