pH‐Universal Electrocatalytic CO2 Reduction with Ampere‐Level Current Density on Doping‐Engineered Bismuth Sulfide

Author:

Jiang Zinan1,Ren Shan2,Cao Xi1,Fan Qikui3,Yu Rui1,Yang Jian1,Mao Junjie1ORCID

Affiliation:

1. Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University, Wuhu 241002 Anhui China

2. Center for Materials and Interfaces Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences 1068 Xueyuan Avenue Shenzhen, Guangdong 518055 China

3. Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics School of Physics Xi'an Jiaotong University Xi'an 710049 China

Abstract

AbstractThe practical application of the electrocatalytic CO2 reduction reaction (CO2RR) to form formic acid fuel is hindered by the limited activation of CO2 molecules and the lack of universal feasibility across different pH levels. Herein, we report a doping‐engineered bismuth sulfide pre‐catalyst (BiS‐1) that S is partially retained after electrochemical reconstruction into metallic Bi for CO2RR to formate/formic acid with ultrahigh performance across a wide pH range. The best BiS‐1 maintains a Faraday efficiency (FE) of ~95 % at 2000 mA cm−2 in a flow cell under neutral and alkaline solutions. Furthermore, the BiS‐1 catalyst shows unprecedentedly high FE (~95 %) with current densities from 100 to 1300 mA cm−2 under acidic solutions. Notably, the current density can reach 700 mA cm−2 while maintaining a FE of above 90 % in a membrane electrode assembly electrolyzer and operate stably for 150 h at 200 mA cm−2. In situ spectra and density functional theory calculations reveals that the S doping modulates the electronic structure of Bi and effectively promotes the formation of the HCOO* intermediate for formate/formic acid generation. This work develops the efficient and stable electrocatalysts for sustainable formate/formic acid production.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3