Discovery of the Azaserine Biosynthetic Pathway Uncovers a Biological Route for α‐Diazoester Production

Author:

Van Cura Devon1ORCID,Ng Tai L.1,Huang Jing23,Hager Harry1ORCID,Hartwig John F.4ORCID,Keasling Jay D.23567ORCID,Balskus Emily P.18ORCID

Affiliation:

1. Department of Chemistry and Chemical Biology Harvard University Cambridge, MA USA

2. Biological Systems and Engineering Division Lawrence Berkeley National Laboratory Berkeley, CA USA

3. Joint BioEnergy Institute Lawrence Berkeley National Laboratory Emeryville, CA USA

4. Department of Chemistry University of California, Berkeley Berkeley, CA USA

5. Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, CA USA

6. Synthetic Biochemistry Center Institute for Synthetic Biology Shenzhen Institute for Advanced Technologies Shenzhen China

7. Center for Biosustainability Danish Technical University Lyngby Denmark

8. Howard Hughes Medical Institute Harvard University Cambridge, MA USA

Abstract

AbstractAzaserine is a bacterial metabolite containing a biologically unusual and synthetically enabling α‐diazoester functional group. Herein, we report the discovery of the azaserine (aza) biosynthetic gene cluster from Glycomyces harbinensis. Discovery of related gene clusters reveals previously unappreciated azaserine producers, and heterologous expression of the aza gene cluster confirms its role in azaserine assembly. Notably, this gene cluster encodes homologues of hydrazonoacetic acid (HYAA)‐producing enzymes, implicating HYAA in α‐diazoester biosynthesis. Isotope feeding and biochemical experiments support this hypothesis. These discoveries indicate that a 2‐electron oxidation of a hydrazonoacetyl intermediate is required for α‐diazoester formation, constituting a distinct logic for diazo biosynthesis. Uncovering this biological route for α‐diazoester synthesis now enables the production of a highly versatile carbene precursor in cells, facilitating approaches for engineering complete carbene‐mediated biosynthetic transformations in vivo.

Funder

National Science Foundation

National Institutes of Health

Howard Hughes Medical Institute

U.S. Department of Energy

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3