Improving Electrocatalytic Oxygen Evolution through Local Field Distortion in Mg/Fe Dual‐site Catalysts

Author:

Zhang Jing1,Zhao Yufeng1,Zhao Wanting2,Wang Jing3,Hu Yongfeng4,Huang Chengyu1,Zou Xingli5,Liu Yang1,Zhang Dengsong1,Lu Xionggang5,Fan Hongjin6,Hou Yanglong2ORCID

Affiliation:

1. College of Sciences&Institute for Sustainable Energy Shanghai University Shanghai 200444 China

2. School of Materials Science and Engineering Peking University Beijing Key Laboratory for Magneto Electric Materials and Devices (BKLMMD) Beijing 100871 China

3. State Key Laboratory of Metastable Materials Science and Technology Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse Yanshan University Qinhuangdao 066004 China

4. Canadian Light Source University of Saskatchewan Saskatoon Saskatchewan Canada

5. State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering Shanghai University Shanghai 200444 P. R. China

6. School of Physical and Mathematical Sciences Nanyang Technological University Singapore 639798 Singapore

Abstract

AbstractTransition metal single atom electrocatalysts (SACs) with metal‐nitrogen‐carbon (M−N−C) configuration show great potential in oxygen evolution reaction (OER), whereby the spin‐dependent electrons must be allowed to transfer along reactants (OH/H2O, singlet spin state) and products (O2, triplet spin state). Therefore, it is imperative to modulate the spin configuration in M−N−C to enhance the spin‐sensitive OER energetics, which however remains a significant challenge. Herein, we report a local field distortion induced intermediate to low spin transition by introducing a main‐group element (Mg) into the Fe−N−C architecture, and decode the underlying origin of the enhanced OER activity. We unveil that, the large ionic radii mismatch between Mg2+ and Fe2+ can cause a FeN4 in‐plane square local field deformation, which triggers a favorable spin transition of Fe2+ from intermediate (dxy2dxz2dyz1dz21, 2.96 μB) to low spin (dxy2dxz2dyz2, 0.95 μB), and consequently regulate the thermodyna‐mics of the elementary step with desired Gibbs free energies. The as‐obtained Mg/Fe dual‐site catalyst demonstrates a superior OER activity with an overpotential of 224 mV at 10 mA cm−2 and an electrolysis voltage of only 1.542 V at 10 mA cm−2 in the overall water splitting, which outperforms those of the state‐of‐the‐art transition metal SACs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3