Integrating Host Design and Tailored Electronic Effects of Yolk–Shell Zn−Mn Diatomic Sites for Efficient CO2 Electroreduction

Author:

Pei Jiajing1,Yang Li23,Lin Jie4,Zhang Zedong5,Sun Zhiyi6,Wang Dingsheng5,Chen Wenxing6ORCID

Affiliation:

1. Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

2. Institutes of Physical Science and Information Technology Anhui University Anhui 230601 China

3. Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstrasse 400 01328 Dresden Germany

4. Ningbo Institute of Materials Technology and Engineering Chinese Academy of Science 1219 Zhongguan West Road Ningbo 315201 P. R. China

5. Department of Chemistry Tsinghua University Beijing 100084 China

6. Energy & Catalysis Center School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China

Abstract

AbstractModulating the surface and spatial structure of the host is associated with the reactivity of the active site, and also enhances the mass transfer effect of the CO2 electroreduction process (CO2RR). Herein, we describe the development of two‐step ligand etch–pyrolysis to access an asymmetric dual‐atomic‐site catalyst (DASC) composed of a yolk–shell carbon framework (Zn1Mn1‐SNC) derived from S,N‐coordinated Zn−Mn dimers anchored on a metal–organic framework (MOF). In Zn1Mn1‐SNC, the electronic effects of the S/N−Zn−Mn−S/N configuration are tailored by strong interactions between Zn−Mn dual sites and co‐coordination with S/N atoms, rendering structural stability and atomic distribution. In an H‐cell, the Zn1Mn1‐SNC DASC shows a low onset overpotential of 50 mV and high CO Faraday efficiency of 97 % with a low applied overpotential of 343 mV, thus outperforming counterparts, and in a flow cell, it also reaches a high current density of 500 mA cm−2 at −0.85 V, benefitting from the high structure accessibility and active dual sites. DFT simulations showed that the S,N‐coordinated Zn−Mn diatomic site with optimal adsorption strength of COOH* lowers the reaction energy barrier, thus boosting the intrinsic CO2RR activity on DASC. The structure‐property correlation found in this study suggests new ideas for the development of highly accessible atomic catalysts.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3