Affiliation:
1. Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University Jiangsu 210009 China
2. School of Microelectronics Fudan University Shanghai 200433> China
3. School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies (OEMT) Sun Yat-sen University Guangdong, 510275 China
Abstract
AbstractInterfacial engineering of perovskite films has been the main strategies in improving the efficiency and stability of perovskite solar cells (PSCs). In this study, three new donor‐acceptor (D–A)‐type interfacial dipole (DAID) molecules with hole‐transporting and different anchoring units are designed and employed in PSCs. The formation of interface dipoles by the DAID molecules on the perovskite film can efficiently modulate the energy level alignment, improve charge extraction, and reduce non‐radiative recombination. Among the three DAID molecules, TPA‐BAM with amide group exhibits the best chemical and optoelectrical properties, achieving a champion PCE of 25.29 % with the enhanced open‐circuit voltage of 1.174 V and fill factor of 84.34 %, due to the reduced defect density and improved interfacial hole extraction. Meanwhile, the operational stability of the unencapsulated device has been significantly improved. Our study provides a prospect for rationalized screening of interfacial dipole materials for efficient and stable PSCs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献