Triangle Cl−Ag1−Cl Sites for Superior Photocatalytic Molecular Oxygen Activation and NO Oxidation of BiOCl

Author:

Guo Furong1,Mao Chengliang2,Liang Chuan1,Xing Pan1,Yu Linghao1,Shi Yanbiao3,Cao Shiyu1,Wang Fanyu1,Liu Xiao1,Ai Zhihui1,Zhang Lizhi13ORCID

Affiliation:

1. Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry Central China Normal University Wuhan 430079 P. R. China

2. Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Departments of Chemistry University of Toronto 80 St. George Street Toronto, ON M5S 3H6 Canada

3. Department School of Environmental Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China

Abstract

AbstractBiOCl photocatalysis shows great promise for molecular oxygen activation and NO oxidation, but its selective transformation of NO to immobilized nitrate without toxic NO2 emission is still a great challenge, because of uncontrollable reaction intermediates and pathways. In this study, we demonstrate that the introduction of triangle Cl−Ag1−Cl sites on a Cl‐terminated, (001) facet‐exposed BiOCl can selectively promote one‐electron activation of reactant molecular oxygen to intermediate superoxide radicals (⋅O2), and also shift the adsorption configuration of product NO3 from the weak monodentate binding mode to a strong bidentate mode to avoid unfavorable photolysis. By simultaneously tuning intermediates and products, the Cl−Ag1−Cl‐landen BiOCl achieved >90 % NO conversion to favorable NO3 of high selectivity (>97 %) in 10 min under visible light, with the undesired NO2 concentration below 20 ppb. Both the activity and the selectivity of Cl−Ag1−Cl sites surpass those of BiOCl surface sites (38 % NO conversion, 67 % NO3 selectivity) or control O−Ag1−O sites on a benchmark photocatalyst P25 (67 % NO conversion and 87 % NO3 selectivity). This study develops new single‐atom sites for the performance enhancement of semiconductor photocatalysts, and also provides a facile pathway to manipulate the reactive oxygen species production for efficient pollutant removal.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3