Scalable Preparation of Ultraselective and Highly Permeable Fully Aromatic Polyamide Nanofiltration Membranes for Antibiotic Desalination

Author:

Liu Haohao1,Liang Lijun2,Tian Feng1,Xi Xugang2,Zhang Yanqin1,Zhang Peng3,Cao Xingzhong3,Bai Yunxiang1,Zhang Chunfang1,Dong Liangliang1ORCID

Affiliation:

1. Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi P. R. China

2. College of Automation Hangzhou Dianzi University 310018 Hangzhou China

3. Institute of High Energy Physics Chinese Academy of Sciences 100049 Beijing P. R. China

Abstract

AbstractMembranes are important in the pharmaceutical industry for the separation of antibiotics and salts. However, its widespread adoption has been hindered by limited control of the membrane microstructure (pore architecture and free‐volume elements), separation threshold, scalability, and operational stability. In this study, 4,4′,4′′,4′′′‐methanetetrayltetrakis(benzene‐1,2‐diamine) (MTLB) as prepared as a molecular building block for fabricating thin‐film composite membranes (TFCMs) via interfacial polymerization. The relatively large molecular size and rigid molecular structure of MTLB, along with its non‐coplanar and distorted conformation, produced thin and defect‐free selective layers (~27 nm) with ideal microporosities for antibiotic desalination. These structural advantages yielded an unprecedented high performance with a water permeance of 45.2 L m−2 h−1 bar−1 and efficient antibiotic desalination (NaCl/adriamycin selectivity of 422). We demonstrated the feasibility of the industrial scaling of the membrane into a spiral‐wound module (with an effective area of 2.0 m2). This module exhibited long‐term stability and performance that surpassed those of state‐of‐the‐art membranes used for antibiotic desalination. This study provides a scientific reference for the development of high‐performance TFCMs for water purification and desalination in the pharmaceutical industry.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3