Toward De Novo Catalyst Discovery: Fast Identification of New Catalyst Candidates for Alcohol‐Mediated Morita–Baylis–Hillman Reactions**

Author:

Rasmussen Maria H.1,Seumer Julius1,Jensen Jan H.1ORCID

Affiliation:

1. Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark

Abstract

AbstractRecently we have demonstrated how a genetic algorithm (GA) starting from random tertiary amines can be used to discover a new and efficient catalyst for the alcohol‐mediated Morita–Baylis–Hillman (MBH) reaction. In particular, the discovered catalyst was shown experimentally to be eight times more active than DABCO, commonly used to catalyze the MBH reaction. This represents a breakthrough in using generative models for catalyst optimization. However, the GA procedure, and hence discovery, relied on two important pieces of information; 1) the knowledge that tertiary amines catalyze the reaction and 2) the mechanism and reaction profile for the catalyzed reaction, in particular the transition state structure of the rate‐determining step. Thus, truly de novo catalyst discovery must include these steps. Here we present such a method for discovering catalyst candidates for a specific reaction while simultaneously proposing a mechanism for the catalyzed reaction. We show that tertiary amines and phosphines are potential catalysts for the MBH reaction by screening 11 molecular templates representing common functional groups. The method relies on an automated reaction discovery workflow using meta‐dynamics calculations. Combining this method for catalyst candidate discovery with our GA‐based catalyst optimization method results in an algorithm for truly de novo catalyst discovery.

Funder

Novo Nordisk Fonden

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3