An Ultralow‐concentration and Moisture‐resistant Electrolyte of Lithium Difluoro(oxalato)borate in Carbonate Solvents for Stable Cycling in Practical Lithium‐ion Batteries

Author:

Liu Zhishan1,Hou Wentao2,Tian Haoran1,Qiu Qian1,Ullah Irfan2,Qiu Shen2,Sun Wei1,Yu Qian1,Yuan Jinliang1,Xia Lan1ORCID,Wu Xianyong2ORCID

Affiliation:

1. Faculty of Maritime and Transportation Ningbo University No. 169 Qixing South Road, Ningbo Meishan Free Trade Zone Ningbo Zhejiang 315832 P. R. China

2. Department of Chemistry University of Puerto Rico-Rio Piedras Campus San Juan, Puerto Rico 00925-2537 United States

Abstract

AbstractThe electrolyte concentration not only impacts the battery performance but also affects the battery cost and manufacturing. Currently, most studies focus on high‐concentration (>3 M) or localized high‐concentration electrolytes (~1 M); however, the expensive lithium salt imposes a major concern. Most recently, ultralow concentration electrolytes (<0.3 M) have emerged as intriguing alternatives for battery applications, which feature low cost, low viscosity, and extreme‐temperature operation. However, at such an early development stage, many works are urgently needed to further understand the electrolyte properties. Herein, we introduce an ultralow concentration electrolyte of 2 wt % (0.16 M) lithium difluoro(oxalato)borate (LiDFOB) in standard carbonate solvents. This electrolyte exhibits a record‐low salt/solvent mass ratio reported to date, thus pointing to a superior low cost. Furthermore, this electrolyte is highly compatible with commercial Li‐ion materials, forming stable and inorganic‐rich interphases on the lithium cobalt oxide (LiCoO2) cathode and graphite anode. Consequently, the LiCoO2‐graphite full cell demonstrates excellent cycling performance. Besides, this electrolyte is moisture‐resistant and effectively suppresses the generation of hydrogen fluoride, which will markedly facilitate the battery assembly and recycling process under ambient conditions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3