Modulation of Colloidal Assembly Behavior Enables Printable Low‐Dimensional Perovskite Photovoltaics

Author:

Xing Zhi1,Meng Xiangchuan1,Li Dengxue1,Zhang Yanyan2,Fan Baojin1,Huang Zengqi3,Wang Fuyi2,Hu Xiaotian14,Hu Ting54,Chen Yiwang134ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University 999 Xuefu Avenue Nanchang 330031 China

2. Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

3. National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China

4. Peking University Yangtze Delta Institute of Optoelectronics Nantong 226010 China

5. Department of Polymer Materials and Engineering School of Physics and Materials Science Nanchang University 999 Xuefu Avenue Nanchang 330031 China

Abstract

AbstractThe multiple quantum wells (QWs) distribution in low‐dimensional perovskite films hinders charge transport due to the fundamental difficulty of controlling crystal growth from precursor solutions, yielding poorly homogeneous low‐dimensional perovskite solar cells (PSCs), especially in upscaling fabrication. Here, efficient low‐dimensional PSCs are realized by modulating the colloidal assembly behavior in the precursor solution to induce intermediate structures. In combination with in situ liquid time‐of‐flight secondary ion mass spectrometry, the assembly behavior of organic cations involved lead iodide‐dominated colloidal soft framework is visualized by investigating the precursor species differences under hydrogen bonding interactions. Subsequently, solid‐state reactions emerge and the formamidine (FA)‐based perovskite films exhibit significantly suppressed multiple QWs distribution. Encouragingly, the FA device (n=9, by meniscus‐assisted coating) achieves a power conversion efficiency (PCE) of 20.28 % for a size of 0.04 cm2 and a PCE of 15.35 % for a mini‐module of 16.94 cm2 with superior stability.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3