Significant Roles of Surface Hydrides in Enhancing the Performance of Cu/BaTiO2.8H0.2 Catalyst for CO2 Hydrogenation to Methanol

Author:

He Yang1,Li Yuanyuan1,Lei Ming2,Polo‐Garzon Felipe1,Perez‐Aguilar Jorge3,Bare Simon R.3,Formo Eric4,Kim Hwangsun5,Daemen Luke6,Cheng Yongqiang6,Hong Kunlun5,Chi Miaofang5,Jiang De‐en2,Wu Zili1ORCID

Affiliation:

1. Chemical Sciences Division and Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN-37831 USA

2. Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville TN-37235 USA

3. Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA-94025 USA

4. Georgia Electron Microscopy University of Georgia Athens GA-30602 USA

5. Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN-37831 USA

6. Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN-37831 USA

Abstract

AbstractTuning the anionic site of catalyst supports can impact reaction pathways by creating active sites on the support or influencing metal‐support interactions when using supported metal nanoparticles. This study focuses on CO2 hydrogenation over supported Cu nanoparticles, revealing a 3‐fold increase in methanol yield when replacing oxygen anions with hydrides in the perovskite support (Cu/BaTiO2.8H0.2 yields ~146 mg/h/gCu vs. Cu/BaTiO3 yields ~50 mg/h/gCu). The contrast suggests that significant roles are played by the support hydrides in the reaction. Temperature programmed reaction and isotopic labelling studies indicate that BaTiO2.8H0.2 surface hydride species follow a Mars van Krevelen mechanism in CO2 hydrogenation, promoting methanol production. High‐pressure steady‐state isotopic transient kinetic analysis (SSITKA) studies suggest that Cu/BaTiO2.8H0.2 possesses both a higher density and more active and selective sites for methanol production compared to Cu/BaTiO3. An operando high‐pressure diffuse reflectance infrared spectroscopy (DRIFTS)‐SSITKA study shows that formate species are the major surface intermediates over both catalysts, and the subsequent hydrogenation steps of formate are likely rate‐limiting. However, the catalytic reactivity of Cu/BaTiO2.8H0.2 towards the formate species is much higher than Cu/BaTiO3, likely due to the altered electronic structure of interface Cu sites by the hydrides in the support as validated by density functional theory (DFT) calculations.

Funder

Basic Energy Sciences

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3