Affiliation:
1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
2. School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 China
3. Department of Chemistry University of North Texas Denton TX 76203 United States
4. State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry Xinjiang University Urumqi 830017 China
Abstract
AbstractAdsorptive separation of propyne/propylene (C3H4/C3H6) is a crucial yet complex process, however, it remains a great difficulty in developing porous materials that can meet the requirements for practical applications, particularly with an exceptional ability to bind and store trace amounts of C3H4. Functionalization of pore‐partitioned metal–organic frameworks (ppMOFs) is methodically suited for this challenge owing to the possibility of dramatically increasing binding sites on highly porous and confined domains. We here immobilized Lewis‐basic (−NH2) and Lewis‐acidic (−NO2) sites on this platform. Along with an integrated nature of high uptake of C3H4 at 1 kPa, high uptake difference of C3H4−C3H6, moderated binding strength, promoted kinetic selectivity, trapping effect and high stability, the NH2‐decorated ppMOF (NTU‐100‐NH2) can efficiently produce polymer‐grade C3H6 (99.95 %, 8.3 mmol ⋅ g−1) at room temperature, which is six times more than the NO2‐decorated crystal (NTU‐100‐NO2). The in situ infrared spectroscopy, crystallographic analysis, and sequential blowing tests showed that the densely packed amino group in this highly porous system has a unique ability to recognize and stabilize C3H4 molecules. Moving forward, the strategy of organic functionalization can be extended to other porous systems, making it a powerful tool to customize advanced materials for challenging tasks.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
State Key Laboratory of Materials- Oriented Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献