Affiliation:
1. State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Beisanhuan East Road, P. Box 98 100029 Beijing P. R. China
2. Green Catalysis Center, College of Chemistry Zhengzhou University 450001 Zhengzhou P. R. China
Abstract
AbstractThe emergence of time‐dependent phosphorescence color (TDPC) materials has taken information encryption to high‐security levels. However, due to the only path of exciton transfer, it is almost impossible to obtain TDPC for chromophores with a single emission center. Theoretically, in inorganic‐organic composites, the exciton transfer of organic chromophores depends on the inorganic structure. Here, we assign two structural effects to inorganic NaCl by metal (Mg2+ or Ca2+ or Ba2+) doping, which triggers the TDPC performance of carbon dots (CDs) with a single emission center. The resulting material is used for multi‐level dynamic phosphorescence color 3D coding to achieve information encryption. The structural confinement activates the green phosphorescence of CDs; while the structural defect activates tunneling‐related yellow phosphorescence. Such simply doped inorganic matrices can be synthesized using the periodic table of metal cations, endowing chromophores with tremendous control over TDPC properties. This demonstration extends the design view of dynamic luminescent materials.
Funder
National Natural Science Foundation of China
Subject
General Chemistry,Catalysis
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献