Confining Polymer Electrolyte in MOF for Safe and High‐Performance All‐Solid‐State Sodium Metal Batteries

Author:

Zhang Jinfang1,Wang Yuanyuan1,Xia Qingbing23ORCID,Li Xiaofeng1,Liu Bin4,Hu Tuoping5,Tebyetekerwa Mike2,Hu Shengliang4,Knibbe Ruth3,Chou Shulei6ORCID

Affiliation:

1. School of Materials Science and Engineering North University of China 030051 Taiyuan Shanxi China

2. School of Chemical Engineering The University of Queensland 4072 Brisbane QLD Australia

3. School of Mechanical and Mining Engineering The University of Queensland 4072 Brisbane QLD Australia

4. School of Energy and Power Engineering North University of China 030051 Taiyuan Shanxi China

5. School of Chemistry and Chemical Engineering North University of China 030051 Taiyuan Shanxi China

6. Institute for Carbon Neutralization College of Chemistry and Materials Engineering Wenzhou Key Laboratory of Sodium-Ion Batteries Wenzhou University Technology Innovation Institute for Carbon Neutralization Wenzhou University 325035 Wenzhou Zhejiang China

Abstract

AbstractNanoconfined polymer molecules exhibit profound transformations in their properties and behaviors. Here, we present the synthesis of a polymer‐in‐MOF single ion conducting solid polymer electrolyte, where polymer segments are partially confined within nanopores ZIF‐8 particles through Lewis acid‐base interactions for solid‐state sodium‐metal batteries (SSMBs). The unique nanoconfinement effectively weakens Na ion coordination with the anions, facilitating the Na ion dissociation from salt. Simultaneously, the well‐defined nanopores within ZIF‐8 particles provide oriented and ordered migration channels for Na migration. As a result, this pioneering design allows the solid polymer electrolyte to achieve a Na ion transference number of 0.87, Na ion conductivity of 4.01×10−4 S cm−1, and an extended electrochemical voltage window up to 4.89 V vs. Na/Na+. The assembled SSMBs (with Na3V2(PO4)3 as the cathode) exhibit dendrite‐free Na‐metal deposition, promising rate capability, and stable cycling performance with 96 % capacity retention over 300 cycles. This innovative polymer‐in‐MOF design offers a compelling strategy for advancing high‐performance and safe solid‐state metal battery technologies.

Funder

National Natural Science Foundation of China

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3