Affiliation:
1. School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
2. College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
3. State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
Abstract
AbstractThe construction of acyclic, non‐adjacent 1,3‐stereogenic centers, prevalent motifs in drugs and bioactive molecules, has been a long‐standing synthetic challenge due to acyclic nucleophiles being distant from the chiral environment. In this study, we successfully synthesized highly valuable 1,2‐bis(boronic) esters featuring acyclic and nonadjacent 1,3‐stereocenters. Notably, this reaction selectively produces migratory coupling products rather than alternative deborylative allylation or direct allylation byproducts. This approach introduces a new activation mode for selective transformations of gem‐diborylmethane in asymmetric catalysis. Additionally, we found that other gem‐diborylalkanes, previously challenging due to steric hindrance, also successfully participated in this reaction. The incorporation of 1,2‐bis(boryl)alkenes facilitated the diversification of the alkenyl and two boron moieties in our target compounds, thereby enabling access to a broad array of versatile molecules. DFT calculations were performed to elucidate the reaction mechanism and shed light on the factors responsible for the observed excellent enantioselectivity and diastereoselectivity. These were determined to arise from ligand‐substrate steric repulsions in the syn‐addition transition state.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Subject
General Chemistry,Catalysis
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献