Fast Water Transport in UTSA‐280 via a Knock‐Off Mechanism

Author:

Hsu Cheng‐Hsun1,Yu Hsin‐Yu1,Lee Ho Jun2,Wu Pei‐Hao3,Huang Shing‐Jong4,Lee Jong Suk25,Yu Tsyr‐Yan367,Li Yi‐Pei1,Kang Dun‐Yen168ORCID

Affiliation:

1. Department of Chemical Engineering National Taiwan University No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan

2. Department of Chemical and Biomolecular Engineering Sogang University Baekbeom-ro 35, Mapo-gu Seoul 04107 Republic of Korea

3. Institute of Atomic and Molecular Sciences, Academia Sinica Taipei Taiwan

4. Instrumentation Center National Taiwan University Taipei 10617 Taiwan

5. Institute of Emergent Materials Sogang University 35, Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea

6. International Graduate Program of Molecular Science and Technology (NTU-MST) National Taiwan University Taipei 10617 Taiwan

7. Molecular Science and Technology Program Taiwan International Graduate Program (TIGP), Academia Sinica Taipei 11529 Taiwan

8. Center of Atomic Initiative for New Materials National Taiwan University No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan

Abstract

AbstractWater and other small molecules frequently coordinate within metal‐organic frameworks (MOFs). These coordinated molecules may actively engage in mass transfer, moving together with the transport molecules, but this phenomenon has yet to be examined. In this study, we explore a unique water transfer mechanism in UTSA‐280, where an incoming water molecule can displace a coordinated molecule for mass transfer. We refer to this process as the “knock‐off” mechanism. Despite UTSA‐280 possessing one‐dimensional channels, the knock‐off transport enables water movement along the other two axes, effectively simulating a pseudo‐three‐dimensional mass transfer. Even with a relatively narrow pore width, the knock‐off mechanism enables a high water flux in the UTSA‐280 membrane. The knock‐off mechanism also renders UTSA‐280 superior water/ethanol diffusion selectivity for pervaporation. To validate this unique mechanism, we conducted 1H and 2H solid‐state NMR on UTSA‐280 after the adsorption of deuterated water. We also derived potential energy diagrams from the density functional theory to gain atomic‐level insight into the knock‐off and the direct‐hopping mechanisms. The simulation findings reveal that the energy barrier of the knock‐off mechanism is marginally lower than the direct‐hopping pathway, implying its potential role in enhancing water diffusion in UTSA‐280.

Funder

National Science and Technology Council

National Taiwan University

Academia Sinica

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3