A Porous Crystalline Nitrone‐Linked Covalent Organic Framework**

Author:

Kurandina Daria1ORCID,Huang Banruo2ORCID,Xu Wentao1ORCID,Hanikel Nikita1ORCID,Darù Andrea3ORCID,Stroscio Gautam D.3ORCID,Wang Kaiyu4ORCID,Gagliardi Laura3ORCID,Toste F. Dean2ORCID,Yaghi Omar M.45ORCID

Affiliation:

1. Department of Chemistry and Kavli Energy Nanoscience Institute University of California, Berkeley Berkeley CA 94720 USA

2. Department of Chemistry University of California, Berkley Berkeley CA 94720 USA

3. Department of Chemistry Pritzker School of Molecular Engineering Chicago Center for Theoretical Chemistry University of Chicago Chicago IL 60637 USA

4. Department of Chemistry Kavli Energy Nanoscience Institute and Bakar Institute of Digital Materials for the Planet Division of Computing, Data Science, and Society University of California Berkeley CA 94720 USA

5. UC Berkeley—KACST Joint Center of Excellence for Nanomaterials for Clean Energy Applications King Abdulaziz City for Science and Technology Riyadh 11442 Saudi Arabia

Abstract

AbstractHerein, we report the synthesis of a nitrone‐linked covalent organic framework, COF‐115, by combining N, N′, N′, N′′′‐(ethene‐1, 1, 2, 2‐tetrayltetrakis(benzene‐4, 1‐diyl))tetrakis(hydroxylamine) and terephthaladehyde via a polycondensation reaction. The formation of the nitrone functionality was confirmed by solid‐state 13C multi cross‐polarization magic angle spinning NMR spectroscopy of the 13C‐isotope‐labeled COF‐115 and Fourier‐transform infrared spectroscopy. The permanent porosity of COF‐115 was evaluated through low‐pressure N2, CO2, and H2 sorption experiments. Water vapor and carbon dioxide sorption analysis of COF‐115 and the isoreticular imine‐linked COF indicated a superior potential of N‐oxide‐based porous materials for atmospheric water harvesting and CO2 capture applications. Density functional theory calculations provided valuable insights into the difference between the adsorption properties of these COFs. Lastly, photoinduced rearrangement of COF‐115 to the associated amide‐linked material was successfully demonstrated.

Funder

Defense Sciences Office, DARPA

National Institutes of Health

National Science Foundation

U.S. Department of Energy

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3