Dynamic Lone Pair Expression as Chemical Bonding Origin of Giant Phonon Anharmonicity in Thermoelectric InTe

Author:

Zhang Jiawei12ORCID,Ishikawa Daisuke34,Koza Michael M.5ORCID,Nishibori Eiji6ORCID,Song Lirong1,Baron Alfred Q. R.34ORCID,Iversen Bo B.1ORCID

Affiliation:

1. Center for Integrated Materials Research Department of Chemistry and iNANO Aarhus University Langelandsgade 140 8000 Aarhus Denmark

2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China

3. Materials Dynamics Laboratory RIKEN SPring-8 Center Sayo 679-5148 Hyogo Japan

4. Precision Spectroscopy Division SPring-8/JASRI 1-1-1 Kouto Sayo 679-5198 Hyogo Japan

5. Institut Laue Langevin 71 avenue des Martyrs 38042 Grenoble France

6. Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba Tsukuba 305-8571 Japan

Abstract

AbstractLoosely bonded (“rattling”) atoms withs2lone pair electrons are usually associated with strong anharmonicity and unexpectedly low thermal conductivity, yet their detailed correlation remains largely unknown. Here we resolve this correlation in thermoelectric InTe by combining chemical bonding analysis, inelastic X‐ray and neutron scattering, and first principles phonon calculations. We successfully probe soft low‐lying transverse phonons dominated by large In1+z‐axis motions, and their giant anharmonicity. We show that the highly anharmonic phonons arise from the dynamic lone pair expression with unstable occupied antibonding states induced by the covalency between delocalized In1+5s2lone pair electrons and Te 5pstates. This work pinpoints the microscopic origin of strong anharmonicity driven by rattling atoms with stereochemical lone pair activity, important for designing efficient materials for thermoelectric energy conversion.

Funder

Villum Fonden

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3