Affiliation:
1. Department of Chemistry and Biochemistry University of California San Diego 92093 La Jolla, CA USA
Abstract
AbstractTriplet‐triplet annihilation upconversion (TTA‐UC) is a photophysical process in which two low‐energy photons are converted into one higher‐energy photon. This type of upconversion requires two species: a sensitizer that absorbs low‐energy light and transfers its energy to an annihilator, which emits higher‐energy light after TTA. In spite of the multitude of applications of TTA‐UC, few families of annihilators have been explored. In this work, we show dipyrrolonaphthyridinediones (DPNDs) can act as annihilators in TTA‐UC. We found that structural changes to DPND dramatically increase its upconversion quantum yield (UCQY). Our optimized DPND annihilator demonstrates a high maximum internal UCQY of 9.4 %, outperforming the UCQY of commonly used near‐infrared‐to‐visible annihilator rubrene by almost double.