Supramolecular Hydrolase Mimics in Equilibrium and Kinetically Trapped States

Author:

Chen Jing1,Shi Ke1,Chen Rongjing23,Zhai Zhaoyi23,Song Peiyong1,Chow Lesley W.45,Chandrawati Rona6ORCID,Pashuck E. Thomas4,Jiao Fang23,Lin Yiyang1ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China

2. Laboratory of Soft Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

3. School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China

4. Department of Bioengineering Lehigh University Bethlehem PA 18015 USA

5. Department of Materials Science and Engineering Lehigh University Bethlehem PA 18015 USA

6. School of Chemical Engineering Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney NSW 2052 Australia

Abstract

AbstractThe folding of proteins into intricate three‐dimensional structures to achieve biological functions, such as catalysis, is governed by both kinetic and thermodynamic controls. The quest to design artificial enzymes using minimalist peptides seeks to emulate supramolecular structures existing in a catalytically active state. Drawing inspiration from the nuanced process of protein folding, our study explores the enzyme‐like activity of amphiphilic peptide nanosystems in both equilibrium and non‐equilibrium states, featuring the formation of supramolecular nanofibrils and nanosheets. In contrast to thermodynamically stable nanosheets, the kinetically trapped nanofibrils exhibit dynamic characteristics (e.g., rapid molecular exchange and relatively weak intermolecular packing), resulting in a higher hydrolase‐mimicking activity. We emphasize that a supramolecular microenvironment characterized by an optimal local polarity, microviscosity, and β‐sheet hydrogen bonding is conducive to both substrate binding and ester bond hydrolysis. Our work underscores the pivotal role of both thermodynamic and kinetic control in impacting biomimetic catalysis and sheds a light on the development of artificial enzymes.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3