Photo‐Driven Iron‐Induced Non‐Oxidative Coupling of Methane to Ethane

Author:

Zhang Huizhen1,Zhong Wanfu1,Gong Qiaobin1,Sun Pengfei1,Fei Xiaozhen1,Wu Xuejiao2,Xu Sha1,Zhang Qinghong1,Fu Gang1,Xie Shunji1ORCID,Wang Ye1

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 Fujian P. R. China

2. Center for Sustainable Catalysis and Engineering Faculty of Bioscience Engineering KU Leuven 3001 Heverlee Belgium

Abstract

AbstractPhoto‐driven CH4 conversion to multi‐carbon products and H2 is attractive but challenging, and the development of efficient catalytic systems is critical. Herein, we construct a solar‐energy‐driven redox cycle for combining CH4 conversion and H2 production using iron ions. A photo‐driven iron‐induced reaction system was developed, which is efficient at selective coupling of CH4 as well as conversion of benzene and cyclohexane under mild conditions. For CH4 conversion, 94 % C2 selectivity and a C2H6 formation rate of 8.4 μmol h−1 is achieved. Mechanistic studies reveal that CH4 coupling is induced by hydroxyl radical, which is generated by photo‐driven intermolecular charge migration of an Fe3+ complex. The delicate coordination structure of the [Fe(H2O)5OH]2+ complex ensures selective C−H bond activation and C−C coupling of CH4. The produced Fe2+ can be used to reduce the potential for electrolytic H2 production, and then turns back into Fe3+, forming an energy‐saving and sustainable recyclable system.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3