CO Intermediate‐Assisted Dynamic Cu Sintering During Electrocatalytic CO2 Reduction on Cu−N−C Catalysts

Author:

Qin Yanyang1,Zhao Wenshan1,Xia Chenfeng2,Yu Li‐Juan3,Song Fei4,Zhang Jianrui1,Wu Tiantian1,Cao Rui5,Ding Shujiang1,Xia Bao Yu2ORCID,Su Yaqiong1

Affiliation:

1. School of Chemistry Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology Xi'an Jiaotong University 710049 Xi'an China

2. School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology (HUST) 430074 Wuhan China

3. Research School of Chemistry Australian National University 2601 Canberra ACT Australia

4. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences 201800 Shanghai China

5. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710119 Xi'an China

Abstract

AbstractThe electrochemical CO2 reduction reaction (eCO2RR) to multicarbon products has been widely recognized for Cu‐based catalysts. However, the structural changes in Cu‐based catalysts during the eCO2RR pose challenges to achieving an in‐depth understanding of the structure–activity relationship, thereby limiting catalyst development. Herein, we employ constant‐potential density functional theory calculations to investigate the sintering process of Cu single atoms of Cu−N−C single‐atom catalysts into clusters under eCO2RR conditions. Systematic constant‐potential ab initio molecular dynamics simulations revealed that the leaching of Cu−(CO)x moieties and subsequent agglomeration into clusters can be facilitated by synergistic adsorption of H and eCO2RR intermediates (e.g., CO). Increasing the Cu2+ concentration or the applied potential can efficiently suppress Cu sintering. Both microkinetic simulations and experimental results further confirm that sintered Cu clusters play a crucial role in generating C2 products. These findings provide significant insights into the dynamic evolution of Cu‐based catalysts and the origin of their activity toward C2 products during the eCO2RR.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3