Enhanced Electron Delocalization Induced by Ferromagnetic Sulfur doped C3N4 Triggers Selective H2O2 Production

Author:

Xu Siran1,Yu Yue1,Zhang Xiaoyu1,Xue Dongping1,Wei Yifan1,Xia Huicong1,Zhang Fuxiang2,Zhang Jia‐Nan1ORCID

Affiliation:

1. Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation College of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China

2. State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

Abstract

AbstractFor the 2D metal‐free carbon catalysts, the atomic coplanar architecture enables a large number of pz orbitals to overlap laterally, thus forming π‐electron delocalization, and the delocalization degree of the central atom dominates the catalytic activity. Herein, designing sulfur‐doped defect‐rich graphitic carbon nitride (S‐Nv‐C3N4) materials as a model, we propose a strategy to promote localized electron polarization by enhancing the ferromagnetism of ultra‐thin 2D carbon nitride nanosheets. The introduction of sulfur (S) further promotes localized ferromagnetic coupling, thereby inducing long‐range ferromagnetic ordering and accelerating the electron interface transport. Meanwhile, the hybridization of sulfur atoms breaks the symmetry and integrity of the unit structure, promotes electron enrichment and stimulating electron delocalization at the active site. This optimization enhances the *OOH desorption, providing a favorable kinetic pathway for the production of hydrogen peroxide (H2O2). Consequently, S‐Nv‐C3N4 exhibits high selectivity (>95 %) and achieves a superb H2O2 production rate, approaching 4374.8 ppm during continuous electrolysis over 300 hour. According to theoretical calculation and in situ spectroscopy, the ortho‐S configuration can provide ferromagnetic perturbation in carbon active centers, leading to the electron delocalization, which optimizes the OOH* adsorption during the catalytic process.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3