Artificial LiF‐Rich Interface Enabled by In situ Electrochemical Fluorination for Stable Lithium‐Metal Batteries

Author:

Jian Hu Xun1,Ping Zheng Yi1,Wei Li Zhi1,Xia Chenfeng2,Chua Daniel H. C.3,Hu Xin1,Liu Ting1,Bin Liu Xian1,Ping Wu Zi13,Yu Xia Bao2ORCID

Affiliation:

1. Faculty of Materials Metallurgy and Chemistry Jiangxi University of Science and Technology (JXUST) 86 Hongqi Road Ganzhou 341000 China

2. Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China

3. Department of Materials Science and Engineering National University of Singapore (NUS) 9 Engineering Drive 1 Singapore 117575 Singapore

Abstract

AbstractLithium (Li)‐metal batteries are promising next‐generation energy storage systems. One drawback of uncontrollable electrolyte degradation is the ability to form a fragile and nonuniform solid electrolyte interface (SEI). In this study, we propose the use of a fluorinated carbon nanotube (CNT) macrofilm (CMF) on Li metal as a hybrid anode, which can regulate the redox state at the anode/electrolyte interface. Due to the favorable reaction energy between the plated Li and fluorinated CNTs, the metal can be fluorinated directly to a LiF‐rich SEI during the charging process, leading to a high Young's modulus (~2.0 GPa) and fast ionic transfer (~2.59×10−7 S cm−1). The obtained SEI can guide the homogeneous plating/stripping of Li during electrochemical processes while suppressing dendrite growth. In particular, the hybrid of endowed full cells with substantially enhanced cyclability allows for high capacity retention (~99.3 %) and remarkable rate capacity. This work can extend fluorination technology into a platform to control artificial SEI formation in Li‐metal batteries, increasing the stability and long‐term performance of the resulting material.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3