Complete Glucose Electrooxidation Enabled by Coordinatively Unsaturated Copper Sites in Metal–Organic Frameworks

Author:

Shi Xiaoyue12,Ling Yiqi1,Li Youcong3,Li Guanhua4,Li Juan1,Wang Lingwei1,Min Fanhong1,Hübner René5ORCID,Yuan Shuai3ORCID,Zhan Jinhua1,Cai Bin16ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China

2. Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science Qingdao University of Science and Technology Qingdao 266061 P. R. China

3. State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 P. R. China

4. Shenzhen Refresh Intelligent Technology Co. Ltd. Guangdong 518000 P. R. China

5. Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany

6. Shenzhen Research Institute of Shandong University Shenzhen 518057 P. R. China

Abstract

AbstractThe electrocatalytic oxidation of glucose plays a vital role in biomass conversion, renewable energy, and biosensors, but significant challenges remain to achieve high selectivity and high activity simultaneously. In this study, we present a novel approach for achieving complete glucose electrooxidation utilizing Cu‐based metal‐hydroxide‐organic framework (Cu‐MHOF) featuring coordinatively unsaturated Cu active sites. In contrast to traditional Cu(OH)2 catalysts, the Cu‐MHOF exhibits a remarkable 40‐fold increase in electrocatalytic activity for glucose oxidation, enabling exclusive oxidation of glucose into formate and carbonate as the final products. The critical role of open metal sites in enhancing the adsorption affinity of glucose and key intermediates was confirmed by control experiments and density functional theory simulations. Subsequently, a miniaturized nonenzymatic glucose sensor was developed showing superior performance with a high sensitivity of 214.7 μA mM−1 cm−2, a wide detection range from 0.1 μM to 22 mM, and a low detection limit of 0.086 μM. Our work provides a novel molecule‐level strategy for designing catalytically active sites and could inspire the development of novel metal–organic framework for next‐generation electrochemical devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Natural Science Foundation of Jiangsu Province

Taishan Scholar Foundation of Shandong Province

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3