Atomic Level‐Macroscopic Structure‐Activity of Inhomogeneous Localized Aggregates Enabled Ultra‐Low Temperature Hybrid Aqueous Batteries

Author:

Yao Jia1,Zhang Bao2,Wang Xiaofang1,Tao Li1,Ji Jie3,Wu Ziang1,Liu Xingtai1,Li Jingying1,Gan Yi1,Zheng Junjie1,Lv Lin1,Ji Xiao4,Wang Hanbin1,Zhang Jun1,Wang Hao1ORCID,Wan Houzhao1

Affiliation:

1. Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices School of Microelectronics Hubei University Wuhan 430062 PR China

2. School of Materials and Energy University of Electronic Science and Technology of China Chengdu Sichuan 610054 China

3. State Key Laboratory of Material Processing and Die & Mold Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China

4. School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan Hubei 430074 China

Abstract

AbstractThe utilization of hybrid aqueous electrolytes has significantly broadened the electrochemical and temperature ranges of aqueous batteries, such as aqueous zinc and lithium‐ion batteries, but the design principles for extreme operating conditions remain poorly understood. Here, we systematically unveil the ternary interaction involving salt‐water‐organic co‐solvents and its intricate impacts on both the atomic‐level and macroscopic structural features of the hybrid electrolytes. This highlights a distinct category of micelle‐like structure electrolytes featuring organic‐enriched phases and nanosized aqueous electrolyte aggregates, enabled by appropriate low donor number co‐solvents and amphiphilic anions. Remarkably, the electrolyte enables exceptional high solubility, accommodating up to 29.8 m zinc triflate within aqueous micelles. This configuration maintains an intra‐micellar salt‐in‐water setup, allowing for a broad electrochemical window (up to 3.86 V), low viscosity, and state‐of‐the‐art ultralow‐temperature zinc ion conductivity (1.58 mS cm−1 at −80 °C). Building upon the unique nature of the inhomogeneous localized aggregates, this micelle‐like electrolyte facilitates dendrite‐free Zn plating/stripping, even at −80 °C. The assembled Zn||PANI battery showcases an impressive capacity of 71.8 mAh g−1 and an extended lifespan of over 3000 cycles at −80 °C. This study opens up a promising approach in electrolyte design that transcends conventional local atomic solvation structures, broadening the water‐in‐salt electrolyte concept.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3