High‐Throughput Screening of Electrocatalysts for Nitrogen Reduction Reactions Accelerated by Interpretable Intrinsic Descriptor

Author:

Lin Xiaoyun12,Wang Yongtao12,Chang Xin12,Zhen Shiyu12,Zhao Zhi‐Jian12,Gong Jinlong1234ORCID

Affiliation:

1. Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China

2. Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China

3. National Industry-Education Platform of Energy Storage Tianjin University 135 Yaguan Road 300350 Tianjin China

4. Joint School of National University of Singapore Tianjin University International Campus of Tianjin University Binhai New City 350207 Fuzhou China

Abstract

AbstractDeveloping easily accessible descriptors is crucial but challenging to rationally design single‐atom catalysts (SACs). This paper describes a simple and interpretable activity descriptor, which is easily obtained from the atomic databases. The defined descriptor proves to accelerate high‐throughput screening of more than 700 graphene‐based SACs without computations, universal for 3–5d transition metals and C/N/P/B/O‐based coordination environments. Meanwhile, the analytical formula of this descriptor reveals the structure–activity relationship at the molecular orbital level. Using electrochemical nitrogen reduction as an example, this descriptor's guidance role has been experimentally validated by 13 previous reports as well as our synthesized 4 SACs. Orderly combining machine learning with physical insights, this work provides a new generalized strategy for low‐cost high‐throughput screening while comprehensive understanding the structure‐mechanism‐activity relationship.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3