Discovery of Alloy Catalysts Beyond Pd for Selective Hydrogenation of Reformate via First‐Principle Screening with Consideration of H‐Coverage

Author:

Wang Jiayi1,Xu Haoxiang1,Zhang Yihao1,Wu Jianguo1,Ma Haowen2,Zhan Xuecheng2,Zhu Jiqin3,Cheng Daojian1ORCID

Affiliation:

1. State Key Laboratory of Organic-Inorganic Composites Beijing Key Laboratory of Energy Environmental Catalysis Beijing University of Chemical Technology Beijing 100029 People's Republic of China

2. Lanzhou Petrochemical Research Center Petrochemical Research Institute, Petrochina Lanzhou 730060 People's Republic of China

3. State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 People's Republic of China

Abstract

AbstractThe highly selective hydrogenation to remove olefins is a significant refining approach for the reformate. Herein, a library of transition metal for reformate hydrogenation is tested experimentally to validate the predictive level of catalytic activity from our theoretical framework, which combines ab initio calculations and microkinetic modeling, with consideration of surface H‐coverage effect on hydrogenation kinetics. The favorable H coverage of specific alloy surface under relevant hydrogenation condition, is found to be determined by its corresponding alloy composition. Besides, olefin hydrogenation rate is determined as a function of two descriptors, i.e. H coverage and binding energies of atomic hydrogen, paving the way to computationally screen on metal component in the periodic table. Evaluation of 172 bimetallic alloys based on the activity volcano map, as well as benzene hydrogenation rate, identifies prospective superior candidates and experimentally confirms that Zn3Ir1 outperforms pure Pd catalysts for the selective hydrogenation refining of reformate. The insights into H‐coverage‐related microkinetic modelling have enabled us to both theoretically understand experimental findings and identify novel catalysts, thus, bridging the gap between first‐principle simulations and industrial applications. This work provides useful guidance for experimental catalyst design, which can be easily extended to other hydrogenation reaction.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3