Low‐coordination Nanocrystalline Copper‐based Catalysts through Theory‐guided Electrochemical Restructuring for Selective CO2 Reduction to Ethylene

Author:

Fang Wensheng1,Lu Ruihu2,Li Fu‐Min1,He Chaohui1,Wu Dan3,Yue Kaihang4,Mao Yu2,Guo Wei1,You Bo1,Song Fei5,Yao Tao3,Wang Ziyun2,Xia Bao Yu1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering State Key Laboratory of Materials Processing and Die & Mould Technology Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China

2. School of Chemical Sciences University of Auckland Auckland 1010 New Zealand

3. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China

4. CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences (SICCAS) Shanghai 200050 China

5. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201800 China

Abstract

AbstractRevealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low‐coordination copper‐based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm−2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full‐cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.

Publisher

Wiley

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3